What does the 3rd Kepler’s law say?

today I want to do a short post about the 3rd Kepler’s law. I kind of really like it because it has very simple explanation but lot of uses at the same time.

The law goes as follow:{\frac  {T_{1}^{2}}{T_{2}^{2}}}={\frac  {a_{1}^{3}}{a_{2}^{3}}}

T stands for time and for semi-major axis of ellipse, that is basicly radius for planets since

What is semi-latus rectum?

their orbit is highly circular. The index and 2 stands for first and second object, basicly you are comparing two objects with each other though they must orbit the same body. This is very useful since you can compare anything in Solar System orbiting Sun with Earth. Why is it useful? Because Earth’s semi-major axis is 1AU and orbit lasts for 1 year which means that this fraction will disappear and you are left only with the object you want to calculate with.

Where did this even came from? The prove for this equation is very simple and basicly stands on the fact that centripetal force equals gravitational force for our orbiting object.


We can find the equations for both of these forces and from them finally get to the Kepler’s law:KeplerLaw3

Ok, before you start to freak out, this is completely easy. First line is clear, I have accidentaly indexed Fd instead of Fc because in Czech the force is called “dostředivá”.

Second line shows the forces and their equations, third canceles the mass of the orbiting body and the radius of orbit. Since v=s/t we can write it down as is shown. Also watch out because s is whole orbit so s^2=4π^2

The equation that you have in fifth and six line is also usable equation! It is more general and does not need the second orbiting body but it needs the mass of object. From this equation you can also figure out the mass of Sun which is completely amazing! (You have to watch out for the right units!)

After the small space I have divided the equation by the same one except that it works with some other object orbiting the same star (or planet..), with this step I will get easily rid of all the π, gravitational constant and mass of the center object.

Now we have the original 3rd Kepler’s law!


PS: in the prove we also assumed that r=a which means that planets orbit on circles not ellipses but it is accurate enough


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s