# Orbital period

Hi,

in today’s short post I will write about orbital period of planets, more accurately synodic and sidereal period.

In the post about year and how difficult it is to determine how long it is, I mentioned that there are some ways you can measure the time it takes for planet to orbit star.

Sidereal period is the time it takes for Earth or other object, orbit once with respect to distant stars.

Now distant stars are great because they tend to be on the same spot most of the time. For example on the Voyager plague there is a map to show the position of distant pulsars, why? Because such things are stable, easy to see and far away. For year we use stars in Milky Way which is still fine, most move by fractions of arcseconds every year which is something you can not notice with eye and has some effects in thousands of years.

Sidereal period of Earth around the Sun is 365.25636 days. (I wonder if you could talk about something like sidereal period of Sun around the center of Galaxy, probably yes)

Synodic period is about two bodies orbiting Sun for example. It is the time that it takes for the two objects to get to same position. So if Mars and Earth are right behind each other (which is called opposition), synodic period is the time it takes for it to happen again. Now of course both planets orbit and the faster one (the one closer to Sun) always has to make at least one revolution. When that happens it just needs to catch up with the slower planet. With this simple thought you can come up with equation that lets you calculate the synodic period:

1/S=1/P-1/p

(lower case p is the sidereal period of the object with longer period)

Thats about it for know, enjoy your winter holiday while/if you still have it!

Dragallur