Habitable zone of a star

Hi,
habitable zone of a star. Sounds like a comfy place, right? Well it can be. It is at least on (tiny portion of) Earth which is an example of object in habitable zone. Such a „zone“ is important for astronomers, or maybe it’s just important for headlines in newspapers.


Habitable zone in a Solar System based on luminosity.

Habitable zone is an area around star where we, with quite limited knowledge on this subject, think that life could be. The simplest „definition“ is that it’s the area where satellite (such as planet) would be able to sustain liquid water. We cannot be sure of course if life needs it but it is the case for the one that evolved on Earth.

The true habitable zone is something a bit more complicated. The simplest case of a planet would be one that behaves as a black body, that means that it absorbs all radiation (light for example) regardless of its wavelength. This is immediately just an assumption because such a planet does not exist. Earth just as Uranus or Mercury reflect light, the planet’s albedo describes this. Albedo is an attribute telling us how much object reflects light. 0 means that it is a black body and 1 means that it is white body aka perfect mirror.

There are even more factors that one could consider. For example, when planet has thick atmosphere it can sustain liquid water (and life) even further out from habitable zone on the other hand if that happens to planet like Venus which is already pretty close, you have got hell. If satellite orbits with high eccentricity the conditions are again different.

It’s hard to combine all of this together which results in lot of different outcomes depending what model one picks. Estimates for Solar System are between 0.9 or even 0.6 to 1.3, 2 or 3 astronomical units. In most of them Earth is just on the inner edge. These numbers were pulled from Wikipedia.

When we hear in news that a new exoplanet was found in a habitable zone it might not mean much. This news usually come alongside the information that the planet has similar size that of Earth, it’s not like we could travel there or anything, now we are mostly collecting data and learning.

Dragallur

HZ picture: By Habitable_zone-en.svg: Chewiederivative work: Ignacio javier igjav (talk) – Habitable_zone-en.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8462897

Advertisement

Problems that we will have to face

Disclaimer: This is my opinion, not advised by anybody, feel free to comment below.

Hi,

There are two problems that we as humans will have to face. I will write about the two that I think are crucial and only now people start to appreciate them.


The first problem is Global warming. It poses a lot of threats not only to fragile ecosystems but to whole Earth. Some of the effects listed from Wikipedia are: extreme weather, sea level rise, ocean acidification, changes in agriculture, environmental migration and much, much more [1].

Global warming is the first problem that we need to address but in this post, I will concentrate on the next issue on the list. Humanity will eventually die out if we are not able to spread in the Universe [2].

First, we could of course ask the question when we should colonize other planets or even if it is good idea. Let’s take a scenario, when humanity successfully colonizes Mars and at the same time Earth is becoming more inhabitable. At some point, we simply leave it behind, maybe let it rejuvenate without ever learning how to live in a way that does not cause rest of life extinct. What would continue? Maybe we will be able to spread out in the rest of the Solar System and eventually leave it behind. In what state though? And does it even matter if Mars which is right now mostly empty wasteland suffers any damage if it is even possible? Maybe we would change into species that travels the Universe and leaves dead rocks behind? What if we encountered other life out there, would them await the same fate as Earth? We are authors of our own morality and clearly there does not seem to be objective one. Our values change, we are starting to really appreciate our surroundings, the question is, are we fast enough?

Picture of Mount Sharp on Mars, taken by Curiosity rover.

Dragallur

Note: I am aware that there are different things that could happen. I took time today to write shortly out what I thought about one of them.

[1] There are also problems not related to Global warming but are as well very global, for example what are we going to do with plastic.

[2] See also, gamma ray bursts, solar eruptions (big problem but probably no immediate deaths), huge asteroid collisions and other things that would wipe us out.

Red Bull Stratos and its giantic balloon

Hi,
we all know that helium balloon raises up which makes it such a fun object, most things in every day life do not do that. This attribute can be used to raise objects or even humans quite high, but at one point you get a problem, the atmosphere is less and less dense.


Red Bull Stratos logo.svgRed Bull Stratos was a project involving helium filled balloon and a capsule with human (Felix Baumgartner). In the year 2012 it raised up to almost 40 kilometers and then the skydiver jumped down. He reached supersonic speeds (faster than sound: 1234 km/h).

In my physics class we talked mostly about the balloon because of what I mentioned in the first paragraph. 40 kilometers is very high and the pressure there is only about 0.497325257421 Pa which is basically vacuum since the atmospheric pressure is 100 000 Pa. (I used the barometric equation)

Because of this, the balloon can not rise so high in thinner air even though the helium is lighter than air. There is so little of it that it does not provide the necessary lift and the balloon has to be huge. In this case it had 9 144 000 cubic meters! Thats a huge thing. The problem of course was that it was not lifting up only one human but the capsule with all equipment weighted 1315 kilograms and the material of the balloon had 1681 kilograms[0].

The whole project was kind of supposed to be for science and finding out how body reacts to high speeds and for further development of pressurized suits[1]. At the same time there was a lot of helium used which was then of course lost. Beware because helium is on the list of endangered elements!

Dragallur

Btw. You can check out my Patreon site here!

[0]The helium also has to be lifting itself.

[1]At about 18 kilometers the pressure is so low that the water in human body starts to evaporate (not all because blood is enclosed but for example saliva). I wrote about that in this other post. To survive you need to be in a suit.

Logo source: By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=37329038

These telescopes are huge (E-ELT, OWL, VLT)

Hi,
today I will write more about telescopes. In a previous post I already mentioned why radio telescopes like Arecibo are so huge, its because of the long wavelength. Today though I will concentrate on another type of telescopes and those are the ones that sit on Earth and collect information from visible light (those are called optical telescopes).

Comparison of various telescopes. Note OWL, the big circle in the background and even bigger white Arecibo.


I already mentioned Hubble telescope and James Webb Telescope (JWT) that is planned for launch next year. Those are in space so they have quite limited size. Down here we can build bigger ones. Right now in building phase is the E-ELT (European Extremely Large Telescope). Its primary mirror will have 39 meters [1] making it the largest optical telescope. It has to be so big because otherwise it could not match the ones in space. This is because we have our lovely atmosphere in the way and it makes harder for telescopes to distinquish small objects (though these days we have software that is able to account for that).

VLT aka Very Large Telescope is already working optical/infra-red telescope. It consists of 4 telescopes each of them with primary mirror of 8.2 meters in diameter. They can work together to make images of angular resolution 0.001 arcsecond. In one post I said that we are not able to take an image of star other than just point like source of light but apparently that is not true so I apologize for it:

First Direct Photo of Alien Planet Finally Confirmed

First confirmed image of an exoplanet. The ones that we can see are bigger than Jupiter and usually quite far away from their star. Credit: Gemini Observatory

VLT is second, right behind Hubble in the amount of scientific papers that its work produced (in the field of visible light/infrared telescopes).

There are many other telscopes that I might mention in the future like Thirty Meter Telescope but I will end it with OWL – Overwhelmingly Large Telescope. It was supposed to be the largest telescope ever, with primary mirror of 100 meters! The price was estimated to be about 1.5 billion euro and because of that it was decided that its not worth it. If we do not kill ourselves we might see giants like those in the future though I have no idea how the scientists, or whoever does it, will name them (UGHT – Unimaginably Giantic Huge Telescope).

Dragallur

[1]Just as JWT, the mirror is made from smaller segments. In the case of E-ELT it is because the mirror would be too heavy and we do not have the technology to build it and in the case of JWT it is because you have to somehow get it into orbit.

Comparison of telescopes: By Cmglee – Own workiThe source code of this SVG is valid., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=33613161

Cassini + Huygens = Purpose of life

Hi,
today I will write about Cassini-Huygens spacecraft because lately there has been so much hype about its final destination (Saturn’s atmosphere).


Cassini was launched in 1997. Its flight towards Saturn itself was very interesting. The spacecraft did a flyby aroundImage result for cassini flight map Venus, two times, then did flyby around Earth.. if you have been paying attention in elementary school you might notice that this is a bit weird since Venus is closer to the Sun and one might one to rather fly in exactly opposite direction. Well first of all that would not neccesarily be the reason since the planets are not in a row all the time but the reason why one does not go directly towards the destination is that it takes high velocity to escape Sun. In all those flybys Cassini got few extra kilometers per second so that it was able to get to Saturn without extra fuel.

The probe made a flyby of Jupiter though at that time Galileo was already orbiting him. In 2004 it reached Saturn and succesfully started to orbit him. Throughout whole mission it did a lot of work of course, for example found new moons of Saturn, discovered water on the moon Enceladus, taught us about the nature of rings and much more. What I found most interesting though is the landing of Huygens spacecraft which was a part of Cassini until it landed on Titan. It was first ever landing on surface in outer solar system (only one so far), and brace yourselves.. it took pictures:

On the left you can actually see the surface. The lander was not functioning very long time, it had battery for 180 minutes and most of the time was spent in atmosphere.

Now Cassini’s mission is comming to an end. This is because it does not have much energy to power its instruments and there is risk that we would lost it completely and then it could fall on Enceladus for example and contaminate it. For that reason Cassini is taking very dangerous dives close to Saturn and its rings to provide some more info and in the end, it will burn up in the atmosphere of the giant planet.

Every single time it is possible that it will be destroyed by some piece of stone. Because of that it uses its antenna as protection but still, it is moving very quickly, so far it dived once, we will see how it goes in the future.

Saturn's north pole in color

North pole, blue color is actually there.

Dragallur

Titan picture: By ESA/NASA/JPL/University of Arizona; processed by Andrey Pivovarov https://commons.wikimedia.org/w/index.php?curid=5685589

North pole picture: Credit: NASA/JPL-Caltech/Space Science Institute/Sophia Nasr

Map picture: http://38.110.37.8/faculty/~m_rulison/Astronomy/Group/Summer%2000/Cassini/ASTRONOMY%20PROJECT.htm