Problems that we will have to face

Disclaimer: This is my opinion, not advised by anybody, feel free to comment below.


There are two problems that we as humans will have to face. I will write about the two that I think are crucial and only now people start to appreciate them.

The first problem is Global warming. It poses a lot of threats not only to fragile ecosystems but to whole Earth. Some of the effects listed from Wikipedia are: extreme weather, sea level rise, ocean acidification, changes in agriculture, environmental migration and much, much more [1].

Global warming is the first problem that we need to address but in this post, I will concentrate on the next issue on the list. Humanity will eventually die out if we are not able to spread in the Universe [2].

First, we could of course ask the question when we should colonize other planets or even if it is good idea. Let’s take a scenario, when humanity successfully colonizes Mars and at the same time Earth is becoming more inhabitable. At some point, we simply leave it behind, maybe let it rejuvenate without ever learning how to live in a way that does not cause rest of life extinct. What would continue? Maybe we will be able to spread out in the rest of the Solar System and eventually leave it behind. In what state though? And does it even matter if Mars which is right now mostly empty wasteland suffers any damage if it is even possible? Maybe we would change into species that travels the Universe and leaves dead rocks behind? What if we encountered other life out there, would them await the same fate as Earth? We are authors of our own morality and clearly there does not seem to be objective one. Our values change, we are starting to really appreciate our surroundings, the question is, are we fast enough?

Picture of Mount Sharp on Mars, taken by Curiosity rover.


Note: I am aware that there are different things that could happen. I took time today to write shortly out what I thought about one of them.

[1] There are also problems not related to Global warming but are as well very global, for example what are we going to do with plastic.

[2] See also, gamma ray bursts, solar eruptions (big problem but probably no immediate deaths), huge asteroid collisions and other things that would wipe us out.

SpaceX meets Moon (soon)

private space company SpaceX aka Elon Musk decided to visit make a flyby around Moon in 2018.

Where to start? Well it probably began with two private citizens who were willing to pay many MANY millions of dollars to get a nice trip. Yes, space tourism, exactly.

This trip is planned to be done with Falcon Heavy which is rocket (not build yet) designed by SpaceX and is supposed to have 2/3 of thrust of Saturn V (the rocket that got Apollo to Moon). The crew will stay for about 8 days in Dragov v2 (v standing for version) capsule that is also not tested yet. Both of these things are supposed to be run later this year.

Dragon V2 in hover test [1]

The crew are definitely some rich people but as of now they are staying anonymous. At the end of this year they are supposed to start some training but otherwise the mission will be automated so they wont have to do much stuff.. also that means that they wont do much science either.. only some tests on their bodies but otherwise it really is only “sightseeing” trip.

Why this whole thing though? Well it will add lot of publicity and earn some money and it is place to test Falcon Heavy and D2 capsule[2]. The last time people went to the Moon was in 1972 and this mission is quite similar to Apollo 8 which was also such a flyby.

Otherwise we do not really know much details, SpaceX will have to do a lot to be able to accomplish this goal and right now it is behind schedule.. there were some rocket explosions which slowed the company down. We will see how it looks like in the upcoming months.


[1]When the rocket starts to explode and there are people on board, you need to be able to escape really fast. The capsule was not tested on rocket yet.

[2]Also if part of it is payed by somebody else.. well why refuse?

Picture source: By SpaceX Photos – Dragon 2 hover test, CC0,

Pioneer Anomaly

today I will write about strange phenomena that occurd to Pioneer 10 and 11 spacecrafts.


Pionner – artist’s concept

Both of these missions are quite old in the space exploration sense. One launched in the year 1972 and the other 1973. They were made to explore outer part of Solar System (meaning still quite close) and after that they of course just went on.. there is no way to retrieve object so far and it would not make much sense.

We lost contact with both but before that we knew how far they were because of their signal. There was something wrong about it anyway, every year when we predicted where they would be they would lack behind about 400 kilometers. Thats almost the length of Czech Republic though Pioneer 10 is able to cover the distance in 33 seconds so that is not much of a difference. But… there is a lot known about the forces acting on the spacecrafts and those could not be it. For example gravity from Sun is slowing them down but it is a thing that one can account for quite easily.

It took few decades to solve this problem (paper finally explaining it was published in 2012). Now we know that it was because of radiation from the spacecrafts as it was losing heat. Pioneers were spin stabilised so that their antennas always pointed towards Earth. The way it was build scientists found out that the radiation causes acceleration towards Sun. But it is kind of weak only: (8.74±1.33)×10−10 m/s2

Thats now much but in Viking program if radiation pressure from Sun (which is a different thing of course) would be ignored it would miss Mars by 15000 kilometers which is quite important.


Pionner picture: By NASA –, Public Domain,

Europa Multiple-Flyby Mission

today I am going to write about proposed mission to investigate Europa.

Europa Multiple-Flyby Mission is a plan consisting of orbiter and a lander directed towards Jupiter‘s moon.

The reason why to choose Europa is quite clear. There is probably liquid water under its surface and if one launches such a thing, it might get public’s attention.[1] (Which might be now more important than ever considering how Trump wants to cut down NASA’s budget especially on the most important thing that they do: Earth’s climate monitoring.)

First of all the orbiter, which would be launched in the next decade, would learn as much as it could about the surface of the moon, Jupiter’s magnetosphere (see later), weird water

Composite image of Europa superimposed on Hubble data

This is two images of course. The original does not have the Europa in middle but only black spot. You can see the plumes on roughly 7 o’clock.

plumes and so on. There are 9 instruments together planned.

Instruments on those orbiters are able to collect data faster than we can receive it. This is because there are more mission that need attention of our receivers. Those are not some small receivers but specialized ones and all missions have some time to send information. For example New Horizons, just from its flyby of Pluto kept sending data for some 6 months.

In case of Jupiter oriented mission this might be a problem because Jupiter has extremely strong magnetosphere which will probably damage the instruments in matter of few weeks. This way it is best to get close to Europa and then get away as soon as possible and send the data later. This can not be done for the lander so it really lasts in matter of days. (Yes, it is still a problem even if you cover your equipment under 150 kilograms of titanium as is planned!)

The lander is thing planned even further into future, around 20 years or so. Much can change and we will see what the priorities are at that point.


[1]People will probably get quite excited by mission promising founding signs of extraterrestrial life.

Isolation for long space missions

so I was watching Michael Stevens’s first and only free episode of Mind Field where he was talking about isolation. He mentioned that there were experiments of people in closed systems to test how body and mind reacts to long term isolation.

In 1989 Stefania Follini was for 130 days in a cave without any visitors, she could only communicate via “internet”. She also had books to read and some small animals like mice. Her menstruation stopped at some point, she slept for about 10 hours and was awake for 20-25! Also during the visit she lost 7.7 kilograms. This is not the longest isolation at all.

NASA also did in the last few years isolation of 6 people for 8 and later 12 months. This was to test the team work of the people since they were closed together cabin fever showed up, but they did not have to cancel the mission. In 2007 Russians did experiment called Mars 500 where six males stayed together for even longet rime, 520 days, only artificial light as before, they brought with them books and games or dvds but they had limited connection with outside world.

Eight months in “cabin” (project HI-SEAS)

Michael Stevens on the other hand spent “only” 3 days in isolation, but it was a bit different. He was in soundproof small room with white walls, white and black bottles with food and water, sink and toilet. This had dramatically different effects. He had halucinations and could not really tell apart dream from reality, also at one point he was counting bottles and counted 6 instead of 9 😀

What are such experiments for? You want to know what happens to body if it is thrown out of its rhytm and mind too. When we are finally able to get to Mars we need people that are capable of staying in small spaceship for months and months.


Private companies take the space industry by attack

today I want to talk about how private companies like SpaceX ,which I already talked about few times and Blue Origin for example, influence the space industry.

For many years there was NASA and only NASA. Now these days you could have noticed that SpaceX appeared, self-funded company with priority of making space cheap. Same interest has also Blue Origin, space company founded by Jeff Bezos, the owner and CEO of Amazon. (billionare as well as Elon Musk of SpaceX)

These two guys and others are aiming for cheap space which is something that NASA was never able to do. After Apollo 11 they wanted to start to use reusable rockets but it never went to perfection. The primary goal of 25 dollars per pound on the orbit of Earth, changed more into something like 25,000 dollars per one pound.

Now NASA wants to make Space Launch System and Orion capsule to get us to Mars. Noble goal it is. There is one “minor” problem. Look at NASA budget over years:

The peak is when we were trying to get to Moon

Right now NASA has about 0.5% of federal budget compared to 4.5 that got us to Moon. Estimates are that the whole Space Launch System (SLS), which is basically huge rocket, will cost in the matters of tens of billions of dollars (this is just development, see later for launch price)! (0.5% is something like 19 billions of dollars).

The thing is that there are other players, like SpaceX who can do this much easily. SLS will be using boosters RS-25 that are from 70s and throw them away after every launch while we have New Shepard of the company Blue Origin that has already been used 5 times over!

From what I have read from Phil Plait and others, SLS will probably be one huge fail. Already now it is behind schedule for its first unmanned launch, not talking about the approximation of mission to Mars (something like 2030-40) where as SpaceX is investing huge amount of money to Falcon Heavy that should be able to carry over time enough stuff to build a base on Mars. Falcon H. payload capacity is over one third of SLS though it should be able to fly several times for the same price as SLS. (I found that it would be able to make more than 5 flights for the same price on the Low Earth Orbit, thats some difference!)

The thing is that NASA is underfunded and right now it even spends money on something that may not ever be working while there are smaller players but with clear and cheaper mission.

Mind you that SpaceX is planning to design Interplanetary Transport System and Blue Origin’s New Armstrong (they are working on New Glenn right now which is one of these huge rockets anyway).

From what I have understood, the key in the future of space exploration is reusability.


Check out these pages for more info: 1) 2) 3) 4) 5) 6)

Btw. NASA does not plan to use SLS more than 3 time per year because otherwise they would have to build up huge facilities. Also the first version of SLS will have payload capacity of almost half the one that I counted in this post. They will have to change it a bit and add some things over time to get to the final capacity.

Rosetta and OSIRIS-REx

today, as promised I will look upon two missions that has to do a lot with small stuff flying around the Solar System.

Now I said stuff because Rosetta is a mission for comet and OSIRIS is mission for asteroid.

Rosetta is a mission that was launched back in 2004 by ESA which is European organization. It went for the comet 67P or also called Churyumov-Gerasimenko which kinda looks like duck:

Comet 67P on 19 September 2014 NavCam mosaic.jpg

Ok, fine, it does not but look here.. from this photo I would say that it is cat with huge tumor on back.

It went with Philae which is a lander module. It took 10 years to get there. It visited two other asteroids and went around Mars.

After some small changes it went to orbit around the comet even though it has escape velocity of 1 m/s.

Then it deployed Philae in 2014 but harpoons that should have eased the landing did not deploy and the site was much harder than it looked like before (the site was chosen because there was supposed to be “soft” regolith). It bounced twice and almost float away completely. It had battery for 2 days which were of course not enough to conduct all experiments and it could not recharge because it was under some cliff. Nobody knew where it was and we could not identify pictures that it took.

Philae found

It puts me in awe to know that this picture is from a comet. (Philae sits in the right middle of the picture in shadow.)

Luckily Rosetta still orbiting the comet finally found it and put them all in context. The mission ends in 30th September and Rosetta will too crush on the surface.

close up of Philae

The picture of Philae

Now that is for some asteroid exploration back in time.

Three days back, 8th September OSIRIS-REx, an asteroid study and sample return mission was launched.OSIRIS-REx Mission Logo December 2013.svg

The last part is pretty huge, yes USA is for the first time going to return samples from an asteroid to Earth (Utah is the landing site).

It launched on the often used Atlas V and the whole mission for asteorid called Bennu will take 7 years. OSIRIS will stay on its surface for whole 505 days! (Look how planned this whole thing is!)

There are lot of instruments on its board which I wont go through all. There are many cameras because OSIRIS will first orbit the asteroid and scan its surface to find a good place to land.

It has special leg that will try to take samples using gas of nitrogen. It can take up to 2 kilograms and enough nitrogen for three tries.


Juno has some real party instruments!

as I promised, today I will write about instruments that Juno has acquired for the journey to Jupiter. Also I wont post anything for something like two weeks again because I am going with my mum and sister to Poland on vacation. After that I will be few days at home and then I will go to Germany for one year (of course I will start writing again at that time).

Juno is very well prepared to gather some data, here are all the things that Juno is capable of:

Gravity measurements

To measure if Jupiter has solid core or not scientists are going to measure Doppler shift of radio waves transmitted back to Earth. The changes of gravity from computed should be from either storms if they go very deep into the atmosphere and/or changes of density and surface of the core if it exists.

JADE – Jovian Auroral Distributions Experiment

Those are three detectors that each covers 120° + one special detector that has 270° view. This experiment is trying to observe the auroras of Jupiter by measuring the charged particles that create them.

JEDI – Jupiter Energetic Particle Detector Instrument

Right this does not correspond to the acronym but you know.. Jedi 😉

This experiment is similar to JADE except that it consists of only one detector and detects particles with lower energy.

JIRAM – Jovian Infrared Auroral Mapper

Again this one watches over auroras but also it makes infrared images of the atmosphere.


This is somewhat unnecessary camera that is going to collect pictures for public. There was even voting for what pictures it should take because it wont have so much time. As I said in the last post it is going to have some cool resolution but we will have to wait about month for it.


Juno also has magnetometer that will measure the strength of the magnetic field and its other attributes. It is quite big instrument with 3.6 meters height.

MWR – Microwave radiometer

Such thing was not used before on Jupiter so it could be huge surprise what we will see in microwave radiation because that is exactly what wavelength this instrument measures.

Ultraviolet Imaging Spectrometer – UVS

This one will watch Jupiter in ultraviolet. Here nice target are again the aurora because they are much easier to watch in UV especially because you can do it even during day.


Waves are basically two antennas which are about 3 meters long and then one smaller electronic device. This instrument is going to measure the interactions between magnetic field and atmosphere. The smaller device is mostly wire, turned 10,000 times around some bar.

From all of this it could seem that Juno is going to measure only magnetosphere and auroras though this is simply what you can do without needing to crush into the planet. (Which will happen anyway though Juno wont survive of course). All of these things are quite observable from far away and yet they can tell you a lot about the planet.


Check out these pages for more info: 1) 2) 3)

Juno is right at the party!

wondering what to write about today I decided that best would be to catch up with the mission Juno which is going to explore Jupiter.

Juno Reaches Jupiter

This is doodle by Google which shows the excitement of the scientists as they watch the signal from Juno coming back after it started to orbit Jupiter.

So it has been basically 5 years since NASA launched Juno (2011 August). This satellite is the second one after Galileo that is going to orbit around Jupiter. Most of others were just on flyby to other places and Galileo kind of broke.

Artist’s impression of Juno.

Juno mission is going to last for about 1 and ½ of a year. This seems kind of short time when you consider that it took alone 5 years to get there. SciShow Space said that it is because NASA does not want to risk getting Europa spoiled with ANY organisms from Earth though I think that this is nonsense and that NASA just does not have enough money which is something I will get to in another post.

What will we get? Well hopefully we will learn more about formation of Jupiter and whole Solar System, this is basically the main purpose but priority is also the gas of Jupiter and its magnetic field. We wont get probably any pictures of the moons because they are not part of the mission and they would be very small. At one point the JunoCam instrument will have a great resolution of Jupiter, about 15 kilometers per pixel. This is something amazing since Jupiter has about 140,000 km in diameter.

Right now Juno is on what is called “capture orbit”. Those are two 53.5 days long orbits which will then lead to 14 day science orbits where the real data is going to be harvested.

Everything about the mission is quite planned.

Juno is also the furthest man-made satellite that is powered only on solar panels. At the distance where it is, there is only 4% of sunlight compared to Earth.

Next time I will cover what tools Juno carries.


There is just an empty space

here is the second season of facts I created, enjoy:

1) The highest ionization energy for copper is over 1,000,000 kJ/mole, one mole of copper is approximately 63.5 grams and the energy taken by this process is equivalent to the chemical energy of 160 L barrel of oil. This equals also to 250 kg of TNT.
2) The longest protein known is Titin: C169 723H270 464N45 688O52 243S912
3) The thickness of soap bubble ranges from 10-1000 nanometers.
4) One Japanese engineer memorized 100,000 digits of pi.
5) Marie Curie was the first woman to get Nobel prize in 1903. She is also the only woman that got 2 Nobel prizes and this happened to only three other people and two organisations. Also her daughter Irène got Nobel prize with her husband.
6) Einstein was asked to be the first president of Israel, he refused.
7) Four new elements have their names, the most massive (proton num. 118) is called Oganesson.
8) Carbon has the highest melting point and that is 3823 K. The highest boiling point is for Rhenium and it is stunning 5869 K!
9) Yes I am serious, if you fold regular piece of paper 42 times you will get it on a Moon. (42? This is no coincidence!)
10) Everything is just a space.


PS: This was automatic post, I will not be able to respond to comments until Monday.