Habitable zone of a star

Hi,
habitable zone of a star. Sounds like a comfy place, right? Well it can be. It is at least on (tiny portion of) Earth which is an example of object in habitable zone. Such a „zone“ is important for astronomers, or maybe it’s just important for headlines in newspapers.


Habitable zone in a Solar System based on luminosity.

Habitable zone is an area around star where we, with quite limited knowledge on this subject, think that life could be. The simplest „definition“ is that it’s the area where satellite (such as planet) would be able to sustain liquid water. We cannot be sure of course if life needs it but it is the case for the one that evolved on Earth.

The true habitable zone is something a bit more complicated. The simplest case of a planet would be one that behaves as a black body, that means that it absorbs all radiation (light for example) regardless of its wavelength. This is immediately just an assumption because such a planet does not exist. Earth just as Uranus or Mercury reflect light, the planet’s albedo describes this. Albedo is an attribute telling us how much object reflects light. 0 means that it is a black body and 1 means that it is white body aka perfect mirror.

There are even more factors that one could consider. For example, when planet has thick atmosphere it can sustain liquid water (and life) even further out from habitable zone on the other hand if that happens to planet like Venus which is already pretty close, you have got hell. If satellite orbits with high eccentricity the conditions are again different.

It’s hard to combine all of this together which results in lot of different outcomes depending what model one picks. Estimates for Solar System are between 0.9 or even 0.6 to 1.3, 2 or 3 astronomical units. In most of them Earth is just on the inner edge. These numbers were pulled from Wikipedia.

When we hear in news that a new exoplanet was found in a habitable zone it might not mean much. This news usually come alongside the information that the planet has similar size that of Earth, it’s not like we could travel there or anything, now we are mostly collecting data and learning.

Dragallur

HZ picture: By Habitable_zone-en.svg: Chewiederivative work: Ignacio javier igjav (talk) – Habitable_zone-en.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8462897

Advertisements

Its about Trappist-1

Hi,
I noticed that in the last days lot of attention was given to this new exoplanets. Well, I guess I have to stay in the “popular sphere” and follow with my post!


Around star called TRAPPIST-1 also known as 2MASS J23062928-0502285 were found together 7 exoplanets, more on this down in the post.

First the star.

Trappist-1 is very small star in special category L which means that it is a red dwarf. You wont find this category in the normal stellar classification because this one and other are made for brown and red dwarfs and were introduced later on. This of course means that Trappist-1 is not very bright or very hot and NOT visible to naked eye (it has apparent magnitude of 18.8 which is way outside of what human eye can see).

All pictures of these planets are artist’s impression.

 

The planets were discovered using transit photometry. Method that takes advantage of the planets blocking out some of the star’s light. In 2015 there were 3 discovered already and in February this year, astronomers in Belgium found another 4.

There names are truly beautiful: b,c,d,e,f,g,h (aka. Trappist-1b…)
b,c,e,f,g have similar size to Earth and d,h have radius somewhere between Mars and Earth. e,f,g also orbit in the habitable zone of planet which is an area around the star where liquid water might stay on the surface.

Bit of a problem is that since the planets are so close they receive lot of radiation from Trappist-1 and are also probably tidaly locked, which means that they are facing the star with always the same side, thats what is happening to our Moon too. All of their orbits’ radiuses (semimajor axes) are in matter of few millions of kilometers. For Earth this is 1 AU or 150 millions and for Mercury roughly one third. Their years last few days, for Trappist-1b it is just 1,5 days. Those are definitely some crazy numbers but since we know so little about formation of new life we can not really say how high the probability of something living there is.

NO signals were detected from that direction.

Dragallur

PS: You would have amazing view from the planets since they are so close together.

Source of picture: By NASA/JPL-Caltech – Catalog page · Full-res (JPEG · TIFF), Public Domain, https://commons.wikimedia.org/w/index.php?curid=56513150

Europa Multiple-Flyby Mission

Hi,
today I am going to write about proposed mission to investigate Europa.


Europa Multiple-Flyby Mission is a plan consisting of orbiter and a lander directed towards Jupiter‘s moon.

The reason why to choose Europa is quite clear. There is probably liquid water under its surface and if one launches such a thing, it might get public’s attention.[1] (Which might be now more important than ever considering how Trump wants to cut down NASA’s budget especially on the most important thing that they do: Earth’s climate monitoring.)

First of all the orbiter, which would be launched in the next decade, would learn as much as it could about the surface of the moon, Jupiter’s magnetosphere (see later), weird water

Composite image of Europa superimposed on Hubble data

This is two images of course. The original does not have the Europa in middle but only black spot. You can see the plumes on roughly 7 o’clock.

plumes and so on. There are 9 instruments together planned.

Instruments on those orbiters are able to collect data faster than we can receive it. This is because there are more mission that need attention of our receivers. Those are not some small receivers but specialized ones and all missions have some time to send information. For example New Horizons, just from its flyby of Pluto kept sending data for some 6 months.

In case of Jupiter oriented mission this might be a problem because Jupiter has extremely strong magnetosphere which will probably damage the instruments in matter of few weeks. This way it is best to get close to Europa and then get away as soon as possible and send the data later. This can not be done for the lander so it really lasts in matter of days. (Yes, it is still a problem even if you cover your equipment under 150 kilograms of titanium as is planned!)

The lander is thing planned even further into future, around 20 years or so. Much can change and we will see what the priorities are at that point.

Dragallur

[1]People will probably get quite excited by mission promising founding signs of extraterrestrial life.