The Standard Model for dummies!

Hi,
last time I talked about some stuff like dark matter (1 & 2), dark energy and I did not explain a lot of things which I mentioned and this time I will talk about Standard Model.


Standard model or Standard model of particles and interaction is the model of all observed and proved particles.

The next picture shows how it looks like, you could say that it is the “modern” periodic table or some kind of holy grail of physics.

So in this standard model you have particles that make up everything we know [1].

There are four main groups which are sorted by the forces they interact with.

All of those particles interact with gravity. Quarks also interact through strong nuclear force while leptons do not interact that way, also all of them have whole numbers for charge.

The red part has inside particles which are what is called “force carriers” they carry the fundamental forces with graviton excluded because he is not proven yet.

The most mysterious is the yellow part with only Higgs boson inside, I will make sure to make a whole chapter only about it.

Quarks

Already months and months ago I made post about quarks. Here I will cut it short so, quarks are particles that made everything there is except just a little part which is made from electrons. Quarks normally group together into hadrons – protons, neutrons, pions. Quarks have charge of either +2/3 or -1/3. They also have a property called color which is not color at all and they must group together so their colors cancel into white (white) [2].

Leptons

There are three main particles called: electrons, muons and tauons. Only electrons are actually somewhere while we can create other in the particle accelerator.

All of those have -1 charge but there are other particles called neutrinos. Electrons, muons and tauons all have their neutrino.

I already wrote about neutrinos but they are actually extremely light particles sometimes called “ghost” particles because they can easily go through whole planet Earth without touching anything. They are also electrically neutral.

Force carriers

Gluons are particles that are mass less and they carry the strong nuclear force.
Photons are also mass less and they carry electromagnetism.
Gauge bosons (W+- and Z) carry weak nuclear force.

Most of those particles have mass and that is because of Higgs boson, but that is whole new story which I will have to start with symmetries and fields, stay tuned.

Also main difference between force carriers and everything else is that they do not need any space to exist, there can be millions of them at one spot while only one lepton or quark.

Dragallur


 

[1] I do not talk about dark matter which I mentioned in earlier posts. WIMPs are not here since they do not belong into standard model, those are particles beyond the model even if they exist.

[2] Quarks have 3 basic colors: Red, Green and Blue but there are of course anti quarks which have just opposite colors: Antired, Antigreen and antiblue.

Advertisements

2) Particles: Neutrinos

Hi!
I am back again with particles post. I was thinking if first should be about electrons or photons and then I realized that neutrinos are kind of really special and fun so I will start with them.

Neutrinos are small particles in group called leptons.
They can be created by thermonuclear reaction which is happening in stars so there are huge amounts of them flying in the Universe. Actually there is so much of them that every second millions of them will pass through every cm^2 of your body. Before it was thought that they are massless which would mean that they are able to travel at the spead of light which is not true, they have some mass but it is not much.
It is really hard to detect them but there are machines that can do that. I think that one of them is built under ice in the Antarctic continent. Even when there is so many neutrinos it can detect only extremely small fraction of them (I would not try to quess the numbers).
Neutrinos also dont interact very much so they are able to pass through whole earth without slowing down.
Supernovas are also really great source of neutrinos but they do not occur that often.
On the Earth we create it in nuclear reactors and neutrinos are also made inside the Earth because as I said in some previous post when material is beta decaying it will release neutrinos.
In the year of 2011 there was mistake when measuring the speed of neutrinos. Computer counted that traveling neutrino was able to travel distance 60 nanoseconds faster than light which is not possible. Soon they luckily knew where was the mistake.
Dragallur